Primitive of a function
Calculation of `\int f(x) \ dx`
This tool calculates the primitive of a function.
Usual functions are accepted: sine, cosine, tangent, logarithm (log), exponential, root, etc. (See table below).
Usual functions are accepted: sine, cosine, tangent, logarithm (log), exponential, root, etc. (See table below).
How to use this calculator ?
Variables | A function can have one or more variables, but only one main variable. A variable is a single lowercase or uppercase letter. Examples: A function f with one main variable : f(x) = 4*x A function g with one main variable x and a secondary parameter m, g(x) = 4*x*m + x + 1, In this case, enter x in the “main variable” field |
---|---|
Numbers | Use a dot as decimal separator |
Operators |
+ (addition), - (substration), * (multiplication), / (division), ^ (power), For multiply operator, enter a*b not a.b nor ab. Example: 2*x. |
Constants | You may use these constants : pi (approx. 3.14), e (approx. 2,72) Examples: f(x) = pi * x or f(x) = e * (x+1+2*e)2 |
Common Functions |
You may use theses functions in the expression of f(x) sqrt(x) (square root), exp(x) (exponential function), log(x) or ln (natural logarithm), |
Trigonometric functions |
You may use theses functions in the expression of f(x) sin (sine), cos (cosine), tan (tangent), cot (cotangent), sec (secant), csc (cosecant), |
Inverse trigonometric functions |
You may use theses functions in the expression of f(x) arcsin (arcsine), arccos (arccosine), arctan (arctangent), arccot (arcotangent), arcsec (arcsecant), arccsc (arccosecant), |
Hyperbolic Functions |
You may use theses functions in the expression of f(x) sinh (hyperbolic sine), cosh (hyperbolic cosine), tanh (hyperbolic tangent), coth (hyperbolic cotangent), sech (hyperbolic secante), csch (hyperbolic cosecant) |
Inverse hyperbolic functions |
You may use theses functions in the expression of f(x) asinh (inverse hyperbolic sine), acosh (inverse hyperbolic cosine), atanh (inverse hyperbolic tangent), acoth (inverse hyperbolic cotangent), asech (inverse hyperbolic secant), acsch (inverse hyperbolic cosecant) |
Table of basic functions primitives
Fonction f(x) | Primitive |
---|---|
`k` where `k in RR` | `k*x+C` |
`x^n` where `n in NN`* | `x^(n+1)/(n+1)+C` |
`1/x` | `ln(|x|)+C` |
`1/x^n` where `n in NN , n >=2` | `-1/((n-1)x^(n-1))+C` |
`sqrt(x)` | `frac{2}{3}*x*sqrt(x)+C` |
`1/sqrt(x)` | `-1/(2*x*sqrt(x))+C` |
`sin(x)` | `-cos(x)+C` |
`cos(x)` | `sin(x)+C` |
`ln(x)` | `x*ln(x)-x+C` |
`e^x` | `e^x+C` |
Table of composite functions primitives
Fonction composée | Primitive |
---|---|
`u'*u` | `u^2/2+C` |
`(u')/u^2` | `-1/u+C` |
`u'*u^n` where `n in NN\text{ and }n != -1` | `u^(n+1)/(n+1)+C` |
`(u')/u^n` where `n in NN\text{ and }n >= 2` | `1/((n-1)*u^(n-1))+C` |
`(u')/sqrt(u)` | `2*sqrt(u)+C` |
`(u')/u` | `ln(|u|)+C` |
`u'*e^u` | `e^u+C` |
`u'*sin(u)` | `-cos(u)+C` |
`u'*cos(u)` | `sin(u)+C` |
`u'*u^a` where `a in RR\text{ and }a != -1` | `u^(a+1)/(a+1)+C` |
`u'*g(u)` | `g(u)+C` |
See also
Derivative calculator
Taylor series expansion
Function limit calculator
Value of a function
Definite Integral