Summation Calculator (`Sigma`)
Answer
Cet outil calcul la somme d'une suite de termes, notée comme suit,
`\sum_{k=p}^{n} u_k = u_p + u_(p+1) + ... + u_(n-1) + u_n`
• k is the sommation index,
• p et n are respectively the lower and upper range of the sommation, which means that the sum of the `u_k` terms begin from k=p and end at k=n.
How to use this calculator ?
'index' field | Input a single letter which denotes the sommation index. Example: i or k |
---|---|
'Calculate sum of' field | Expression (above `u_i`) to sum. this field may include a secondary variable, e.g. `u_i = i + m` see more details below. |
'from index' field | lower limit of the index range (denoted 'p' above). You may input a number or a secondary variable. |
'to index' field | upper limit of the index range (denoted 'n' ci-dessus). You may input a number or a secondary variable or oo (double o) for '+infinity' which is useful for infinite sum calculations. |
• Numbers : digits, fractions, decimal numbers (separator : dot)
• Operators : + - * / ^ (power)
To multiply a by b, input a*b and not ab, e.g. 2*x.
• Constants : pi, e
• Functions
sqrt (square root),
exp (exponential),
log(x) or ln (natural logarithm),
sin (sine),
cos (cosine),
tan (tangent),
cot (cotangent),
sec (secant),
csc (cosecant),
asin (arcsine),
acos (arccosine),
atan (arctangent),
acot (arccotangent),
asec (arcsecant),
acsc (arccosecant)
sinh (hyperbolic sine),
cosh (hyperbolic cosine),
tanh (hyperbolic tangent),
coth (hyperbolic cotangent),
sech (hyperbolic secant),
csch (hyperbolic cosecant)
asinh (Inverse hyperbolic sine)
acosh (Inverse hyperbolic cosine),
atanh (Inverse hyperbolic tangent),
acoth (Inverse hyperbolic cotangent),
asech (Inverse hyperbolic secant),
acsch (Inverse hyperbolic cosecant)
Sum Examples
Clic on an expression to see correspondant calculator.
• Sum of the first 100 natural numbers
1 + 2 + 3 + 4 + ... + 99 + 100 = 5050
• Sum of the first n natural numbers
`1 + 2 + 3 + 4 + ... + n = (n*(n+1))/2`
• Sum of squares of the first 100 natural numbers
12 + 22 + 32 + 42 + ... + 1002 = 338350
• Sum of squares of the first n natural numbers
`1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 = (n*(n+1)*(2n+1))/6`
• Sum of inverse of the first n natural numbers
`1 + 1/2 + 1/3 + 1/4 + ... + 1/(n-2) + 1/(n-1) + 1/n = `H(n) (Harmonic series)
• Sum of inverse of natural numbers
`1 + 1/2 + 1/3 + 1/4 + 1/5 ... = oo`
• Sum of inverse of natural numbers with alternating sign
`1/1 - 1/2 + 1/3 - 1/4 + 1/5 ... = log(2)`
• Sum of inverse of odd natural numbers with alternating sign
`1/1 - 1/3 + 1/5 - 1/7 + ... = pi/4`
• Sum of first n even natural numbers
`2 + 4 + 6 + ... + 2*(n-1) + 2*n = n*(n+1)`
• Sum of first n odd natural numbers
`1 + 3 + 5 + 7 + ... + (2n-1) = n^2`
• Finite Sum of the Reciprocals of Powers of 2
`1 + 1/2 + 1/2^2 + 1/3^2 + ... 1/2^n = 2*(1-1/2^(n+1))`
• Infinite Sum of the Reciprocals of Powers of 2
`1 + 1/2 + 1/2^2 + 1/3^2 + ... = 2`
See also
Sequence Calculators
Numbers and arithmetic Calculators
Mathematics Calculators